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CHAPTER

ONE

OVERVIEW

Nemaktis is an open-source platform including tools for propagating and visualising optical fields in complex birefrin-
gent media such as liquid crystal (LC) layers. It includes three backends implementing advanced numerical methods
for light propagation, as well as an easy-to-use high level interface in python allowing to quickly setup a simulation
and visualize optical microraphs of a LC structure as in a real microscope. It goes well beyond the Jones method
usually used in LC research, by acurately modeling diffraction, walk-off, focusing effects, Koëhler illumination. . .

If you want a platform for easily comparing experimental images and numerical micrographs from simulated or theo-
retical birefringent structures, you are in the right place!

1.1 License

Nemaktis is released under MIT license so you can use it freely. Please cite the following publications if you use
Nemaktis to prepare a figure in a scientific paper:

• G. Poy, S. Žumer, Soft Matter 15, 3659-3670 (2019)

• G. Poy, S. Žumer, Optics Express 16, 24327-24342 (2020)

1.2 Contributors

• High-level interface, ray-tracing and beam propagation backends: Guilhem Poy, Slobodan Žumer.

• Diffraction transfer matrix backend: Andrej Petelin, Alex Vasile.

1.3 Highlights

• Easy-to-use scripting interface in python

• Support for Koehler illumination setup (multiple incoming plane waves)

• Support for arbitrary number of isotropic layers around the birefringent object (e.g. glass plates).

• Support for arbitrary uniaxial media (biaxial support coming soon).

• Graphical user interface to visualize optical fields, with interactive sliders for the parameters of the microscope.
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1.4 Limitations

• Paraxial propagation is assumed, which excludes high-NA microscope objectives.

• No support for reflection microscopy

• No support (yet) for biaxial media

The last two limitations should be lifted in the future since the associated theoretical framework is already ready (I
just need to find students or the time to code everything!). If you want to implement new features that you think could
benefit the whole software, please contact me (address below)!

Concerning the paraxial approximation, I can mention that I have also developped a closed-source wide-angle beam
propagation method, which can model non-linear optical systems, wide-angle deflection of light beams by birefringent
structures, waveguiding. . . If you are interested in starting a collaboration on this closed-source software, please send
me a quick message explaining the optics problem that you want to solve.

1.5 Contact

• Personal website: https://www.syncpoint.fr

• Email: guilhempoy07 [at] gmail [dot] com

2 Chapter 1. Overview
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CHAPTER

TWO

INSTALLATION

Nemaktis is a mixture of C++ and python codes, and have been successfully tested both on Windows and Linux
(note that it should be straightforward to adapt it for Mac, since it is a Unix-based OS). The next two subsections
present the two possible ways of installing this package.

2.1 With Conda (windows or linux)

The simplest way of installing the Nemaktis package is through the package manager conda (no compilation and
no dependency to be installed by hand). I provide precompiled packages for both Linux and Windows, which means
the following method will work on these two operating systems.

The first step is to install the software miniconda, which contains a barebone version of the package manager
conda. If you already have the full python distribution Anaconda installed on your machine, this step is not neces-
sary. The installation files for Windows/Linux are available at this address: https://docs.conda.io/en/latest/miniconda.
html

If you are a Windows user and do not want to copy-paste commands in a terminal, the next step is as simple as running
the following installation script

https://github.com/warthan07/Nemaktis/releases/download/v1.3/Install.Nemaktis.cmd

This script will create a special environment for Nemaktis named nm and will install everything needed in it. It
will also install the python editor Spyder and create a shortcut named Spyder (Nemakis environment) for it on your
Desktop (this is necessary even if you already installed Spyder, since it has to be run from inside the conda environment
nm).

If you are a Linux user or want to type the installation commands yourselves (they are not very complicated after all!),
open a terminal (Windows: application “Conda terminal” installed with miniconda, Linux: any terminal) and type the
following command:

conda create -n nm -c conda-forge -c warthan07 -y nemaktis=1.3.4

(Optional) If you want to use your favourite python editor when using Nemaktis, you have to install and run it from
the same environment. You can search https://anaconda.org/ to find the associated package and installation command.
For example, to install Spyder you just need to type:

conda activate nm
conda install spyder

3
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2.2 Developper method (only linux)

If you want to be able to modify the code, but still want to enjoy the simplicity of conda packages (no relative paths to
manage, everything works as with a system package), you can build yourselves the nemaktis package for Linux:

1. Get the code of the Nemaktis repository:

git clone git@github.com:warthan07/Nemaktis.git

And implements the changes that you want. For the C++ codes, compilation steps are provided in the subfolders
bpm-solver and rt-solver if you want to test them locally (in which case you will have to install yourselves the
dependencies listed in each CMakeLists).

2. In a terminal, go to the subfolder conda_recipe of the Nemaktis repository and activate any conda environ-
ment in which you have write access. If you don’t have any conda environment yet, you can type:

conda create -n build
conda activate build

If necessary, install the conda-build tools:

conda install conda-build conda-verify

3. Run the following command, which will create a sub-environment, install all dependencies listed in meta.yaml,
and compile/package everything (it should take between 5 and 10 minutes):

conda-build . -c conda-forge

4. Once the package is built, you can install it in your current environment by typing:

conda install -c anaconda -c conda-forge -c ${CONDA_PREFIX}/conda-bld/ nemaktis

4 Chapter 2. Installation



CHAPTER

THREE

MICROSCOPY MODEL FOR NEMAKTIS

We present here the theoretical model of microscopy that is at the core of Nemaktis. A few interactive graphics are
provided in order to better understand important concepts. The javascript code for these interactive examples can be
found in an ObservableHQ notebook.

3.1 1. General description

In a real transmission and/or reflection microscope, objects are imaged using a combination of lighting systems and
lenses. The path of light in such microscopes can always be decomposed in three steps:

1. Light propagates from the illuminating source to the object through the illumination optical setup.

2. Light is transmitted through (or reflected from) the object.

3. Light transmitted or reflected from the object propagates through the microscope objective and form an observ-
able image in a target imaging plane.

The case of spectrally-extended lighting (e.g. white light lamp) can be easily covered by projecting on an appropriate
color space the final images formed by the different wavelengths of the lamp spectrum. In Nemaktis, this is done
internally after repeating the imaging simulations for all the wavelengths in a user-defined array approximating the
lamp spectrum. For more details on the color space projection method, see Color conversion in the documentation
of dtmm, one of the backend used in Nemaktis. Here, we consider for simplicity’s sake a simple microscopy model
based on lighting with a single wavelength. We describe in the next sections the physical mechanisms behind the three
steps introduced above, as schematized below in a simplified representation of our virtual microscope in transmission
mode:

We also provide an additional Sec. 5 to explain the modeling of optical elements for polarized micrographs, which are
mostly ignored in Sec. 2-4.

3.2 2. Koehler illumination setup

The first propagation step is the illumination of the object by the light source. The standard illumination setup used
in most microscopes is called the Koehler illumination setup (introduced by August Koehler in 1893), and has the
advantage of allowing a uniform lighting even with non-uniform light source. In short, it allows to map each point
of the light source to a single uniform plane wave incident on the object with a certain angle; the maximum angle of
incidence for the plane waves is set by an aperture called the condenser aperture, thus the set of plane waves incident
on the object all have wavevectors included inside a cone of illumination whose opening is set by the condenser
aperture.

In addition, a field aperture allows to control the size of the lighting spot on the object. In practice, the mapping
between points on the light source and incident plane waves is only approximate due the imperfection of the optical
elements and the wave nature of light, especially near the boundary of the lighting spot on the object. However, this
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is not a problem in Nemaktis since we always assume that the lighting spot is much bigger than the typical size of the
observed object, thus justifying the representation in terms of incoming plane waves.

In order to better understand how this illumination setup works, an interactive example is provided below, where the
reader can dynamically adjust the sliders for opening/closing the field and condenser apertures:

A correctly assembled Koehler illumination setup has the following properties:

• The field aperture is in the back focal plane of the lamp collector lens.

• The condenser aperture is in the front focal plane of the condenser lens.

• The image of the lamp filament through the lamp collector lens is in the same plane as the condenser aperture.

• The image of the field aperture throught the condenser lens is is in the same plane as the object.

We emphasize that the lamp filament is always spatially incoherent, thus the different incident plane waves cannot
interfer between themselves. This means that the final image in the microscope is always obtained by summing-by-
intensity the individual images formed by each incident plane waves. In real life, there is always an infinite number of
plane waves incident on the object, but in the computer one must choose an approximate discrete set of plane waves.
In Nemaktis, the set of incoming plane waves is chosen to have the following wavevectors (assuming that the third
coordinate correspond to the main propagation axis in the microscope):

𝑘⃗(𝑘,𝑙) = 𝑘0

⎛⎜⎜⎝
𝑞(𝑘) cos 𝜃(𝑘,𝑙)

𝑞(𝑘) sin 𝜃(𝑘,𝑙)√︁
1 −

[︀
𝑞(𝑘)

]︀2
⎞⎟⎟⎠

where we defined 𝑘0 = 2𝜋/𝜆 with 𝜆 the wavelength in empty space and:

𝑞(𝑘) =
𝑘

𝑁𝑟 − 1
NAmax, 𝑘 = 0 · · ·𝑁𝑟 − 1

𝜃(𝑘,𝑙) =
𝜋𝑙

3𝑘
, 𝑙 = 0 · · · 6𝑘

Here, NAmax = sin𝜓max (with 𝜓max the maximal angle of opening of the wavevectors) is the maximal numerical
aperture of the Koehler illumination setup, and 𝑁𝑟 correspond to the number of discretization steps in the radial
direction. This choice of wavevectors correspond to a standard discretization of a circular aperture in the transverse
plane, which can be interactively visualized below by adjusting the sliders for 𝑁𝑟 and NA.

In Nematkis, this mesh is fully characterized by the two parameters, NAmax and 𝑁𝑟, and has a total number of points
of 1 + 3𝑁𝑟(𝑁𝑟 − 1). Since this mesh is (weakly) nonuniform, we use a tailored integration rule to recombine the
microscope images in the final imaging plane, which also have the benefit of being able to dynamically change the
numerical aperture of the condenser between 0 and NAmax in the microscope’s user interface.

To conclude this section, we mention the final approximation made in Nemaktis for the illumination setup: we assume
that all the incoming plane waves have the same intensity. This approximation is probably not true in a real microscope,
but has the advantage of always yielding rotationally invariant images when observing rotationally invariant objects
(e.g. isotropic droplets) with natural light, as empirically observed in most microscopes. In any case, the goal of
our simple model of Koehler illumination setup for Nematkis is only to provide a qualitatively correct description of
the “smoothing” effect (due to the increasing number of incident planewaves) of a real microscope when opening the
condenser aperture.

6 Chapter 3. Microscopy model for Nemaktis
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3.3 3. Transmission/Reflection of light inside the object

The next step is the transmission or reflection of light inside the object. In Nemaktis, we exlude metallic surfaces and
metamaterials, and assume that the object is fully transparent (no absorption), time-invariant (no fluctuations leading
to light scattering), and can be represented by a permittivity tensor field 𝜖𝑖𝑗(𝑥, 𝑦, 𝑧) which is discretized on a 3D
cartesian mesh. The transmission and reflection of light in such objects is modeled by the well-known wave equation
for the time-harmonic Maxwell electric field 𝐸⃗(𝑥, 𝑦, 𝑧) exp [−𝑖𝑘0𝑐𝑡] (with 𝑐 the light speed and 𝑘0 the wavevector in
empty space):

∇⃗ × ∇⃗ × 𝐸⃗ − 𝑘20 ¯̄𝜖𝐸⃗ = 0

There exists general schemes for fully solving this equation (most notably the Finite-Difference-Time-Domain
method), but they are computationally very intensive, which is why we resort to less expansive (but approximate)
methods in Nemaktis. More specifically, we propose three “backends” which allows to propagate the optical fields
inside the object and are described in the following subsections. As a general rule, each backend provides a set of
mappings between each incoming plane waves (see Sec. 2) and output optical fields defined on the output object plane
(see figure in Sec. 1). In the current version of Nemaktis, only transmitted optical fields are considered as “output”,
support for reflected fields will come later.

3.3.1 3.1 The beam-propagation backend (bpm-solver)

This backend correspond to a subset of a generalized framework for beam propagation in general birefringent medium
that I developed (see citation below). This generalized framework relies on a minimal set of physical assumptions
(most notably a relatively small refractive index contrast ∆𝑛 < 0.4 inside the object) and admits two Beam Propaga-
tion Methods (BPM):

• Wide-angle BPM, which can accurately propagate optical fields up to deviation angles of 20-30°.

• Paraxial BPM, which can accurately propagate optical fields up to deviation angles of 5-10°.

The second version of BPM is especially suite for microscopy applications, since in most microscopes (exluding
confocal microscopes with high numerical aperture objective) only the paraxial components of light contributes to the
final image. In our open-source package Nemaktis, only paraxial BPM is included as a backend for microscopy, but we
are open to new collaborations on our closed-source wide-angle BPM for advanced uses (nonlinear optics, modeling
of complex photonics devices, steering of light using birefringent structures. . . ).

At its core, the beam propagation works by decomposing the optical (electric) field 𝐸⃗ into forward and backward
propagating fields inside a series of layers approximating the full permittivity profile ¯̄𝜖(𝑥, 𝑦, 𝑧):

The permittivity tensor is assumed to be stepwise constant along 𝑧 (the main axis of propagation inside the microscope)
but is allowed to have arbitrary variations in the transverse directions 𝑥 and 𝑦. Our beam propagation framework
correspond to a set of equations allowing to propagate the optical fields inside each layers (including diffraction and
beam walk-off effects due to the nonuniformity of the optical and permittivity fields) and transfer fields through the

3.3. 3. Transmission/Reflection of light inside the object 7



Nemaktis, Release 1.3.3

discontinuity interface between each layer. In Nemaktis, we assume smooth variations of the permittivity along 𝑧 and
therefore only propagates forward-propagating fields using the following formula:

E(𝑧𝑛+1) = U ·E(𝑧𝑛),

where E(𝑧𝑛) is a huge vector containing all degree-of-freedoms for the optical fields in the transverse plane 𝑧 = 𝑧𝑛
and U is an evolution operator which can be written as an easy-to-compute product of exponential of sparse matrices
representing differential operators on 2D meshes. The evolution operator U is directly derived from Maxwell equations
with a few mathematical assumptions (small index contrast and paraxiality of fields) and can be applied in a very
efficient way (complexity 𝑂(𝑁), with 𝑁 the total number of degree-of-freedoms for the computational mesh).

Since we only take into account forward-propagating fields, reflection microscopy is currently not supported in Ne-
maktis, but we hope to implement this feature in the future since we already derived the associated theoretical frame-
work. Note that internally, each imaging simulation includes a lot of different paraxial BPM sub-simulations for each
incident plane-wave, source wavelength, and input polarisations. Using the same notation as in Sec. 2 and assuming a
single input wavelength, the incident optical fields for all these sub-simulations are written as:

𝐸⃗(𝑘,𝑙,𝑚)(𝑥, 𝑦) = exp
{︁
𝑖
[︁
𝑥𝑘(𝑘,𝑙)𝑥 + 𝑦𝑘(𝑘,𝑙)𝑦

]︁}︁
𝑢⃗𝑚,

where 𝑘 and 𝑙 are the indices for the input wavevector 𝑘⃗(𝑘,𝑙) and 𝑢⃗𝑚 (𝑚 = 1, 2) is an orthogonal basis for the input
polarisation. The use of repeated simulations based on orthogonal polarisations allows the caching of relevant data for
efficiently simulating arbitrary polarized optical micrographs (using polariser, analyzer, waveplate. . . ), with a dynamic
real-time adjustment of the associated parameters (e.g. polariser and analyzer angle) in the graphical user interface.

Readers interested in our beam propagation framework can read the associated publication:

[G. Poy and S. Žumer, Optics Express 28, 24327 (2020)]

3.3.2 3.2 The diffraction transfer matrix backend (dtmm)

This backend correspond to a python package originally written by a colleague, Dr. Andrej Petelin, and that we decided
to include in Nemaktis for easy comparison between different approaches of electromagnetic field propagation. At its
core, the diffractive transfer matrix method (DTMM) of Dr. Petelin is conceptually very close to the beam propagation
backend presented above in Sec. 3.1: the permittivity tensor field representing the object is also split in a series
of birefringent slabs, evolution operators are similarly used to propagate the fields inside the slabs, and continuity
equations are used to transfer the fields between the layers. The difference between DTMM and our BPM framework
mainly lie in the way that the evolution operators are calculated: in DTMM, this evolution operator is calculated with
a clever heuristic combination of the Berreman method and diffraction transfer matrix applied in Fourier space. The
Berreman method was originally developped for the calculation of transmitted and reflected light in layered system
(permittivity tensor field independent from 𝑥 and 𝑦) and neglects diffraction (the redistribution of optical energy due
to non-uniformity of the optical and permittivity fields); in DTMM, the evolution operators derived by Berreman are
combined with a powerful treatment of diffraction in Fourier space based on local mode grouping, thus allowing to
take into account variations of fields in the 𝑥 and 𝑦 directions.

Since this is a Fourier-based method, its complexity is 𝑂(𝑁 log [𝑁/𝑁𝑧]) with 𝑁 the total number of mesh points and
𝑁𝑧 the number of layers. It is also based on a user-defined parameter allowing to define the accuracy of diffraction in
the simulation:

• low value of this parameter provide quick (but inacurate) simulations with faster running times than BPM on
relatively small meshes (for big meshes, the logarithmic complexity of dtmm kicks in and DTMM is slower than
BPM);

• high value of this parameter provide accurate simulations (computational errors slightly worse than the ones
obtained with BPM, but still relatively good) with slower running times than with BPM.

8 Chapter 3. Microscopy model for Nemaktis
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In short, DTMM is the perfect backend if you want to quickly try imaging simulations without worrying too much
about the accuracy, whereas BPM is more suited for efficient accurate simulations on arbitrary big meshes (provided
that enough random-access-memory is available!).

In Nemaktis, DTMM is closely integrated in the high-level python package allowing to run imaging simulations, but
we emphasize that DTMM also has a dedicated python package with advanced features such as iterative algorithms
for the calculation of reflected fields (a feature which is currently missing in the BPM backend):

[DTMM: a Diffractive Transfer Matrix Method]

3.3.3 3.3 The ray-tracing backend (rt-solver)

This backend relies on the so-called geometrical optics approximation and works by decomposing the incoming plane
wave in a series of light rays, which are propagated through the object using Hamiltonian ray-tracing equations.
The validity of this method is quite restricted: the permittivity tensor field ¯̄𝜖(𝑥, 𝑦, 𝑧) must correspond to a uniaxial
birefringent medium whose optical axis is smoothly varying in space, with typical variation lengths much bigger
than the wavelength of light. It also necessitates some tweaking in order to correctly reconstruct the optical fields
on a cartesian mesh (since the ray-tracing method only gives optical fields along rays, which can be deflected by the
object).

Since this method cannot be really used as a “blackbox” simulation tool, it is provided as such (i.e. as a low-level C++
code) without any integration in the easy-to-use high-level python interface in Nemaktis. Nevertheless, this method
can still be useful to get some physics insight on how light is deflected in particular systems (see for example [J. Hess,
G. Poy, J.-S. B. Tai, S. Žumer and I. I. Smalyukh, Phys. Rev. X 10, 031042 (2020)] or to make attractive scientific
visualizations like the image below (cover of the paper presenting our method, which is cited below):

3.3. 3. Transmission/Reflection of light inside the object 9
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Readers interesting with further details on our ray-tracing method can refer to the following publication:

[G. Poy and S. Žumer, Soft Matter 15, 3659 (2019)]

3.4 4. Imaging of the object

The final step of light propagation inside the microscope is the proper imaging of the object using the light coming
from the object (i.e. the output of the backends presented in Sec. 3). In a real microscope, this is done by combining an
objective with an eyepiece lens allowing to project on the user’s retina the optical fields coming from a plane aligned
inside the object. As a general rule, this system is always associated with two planes: the focusing plane which is
roughly aligned with the object, and the imaging plane in which the final image is formed. Since this is a linear optical
system, the optical fields on both planes are always related by a linear transform:

𝐸⃗
[︁
𝑟⃗(im)

]︁
=

∫︁
¯̄𝐺
[︁
𝑟⃗(im), 𝑟⃗(foc)

]︁
𝐸⃗
[︁
𝑟⃗(foc)

]︁
d2𝑟⃗(foc)

where 𝑟⃗(im) (𝑟⃗(foc)) correspond to coordinates on the imaging (focusing) plane and ¯̄𝐺 is called the point-spread-
function (PSF) of the imaging system. The actual expression of the PSF depends on the implementation of the imaging
lens, but in general it acts as a low-pass filter because it is aperture-limited, i.e. one cannot observe details below the
diffraction limit (typical width of a detail smaller than the wavelength). In Nemaktis, we use a very simple model of
imaging system based on a single objective lens and the imaging/focusing planes placed at distance 2𝑓 on each side of
the lens (with 𝑓 the focal length of the objective). We assume that the objective is an ideal thin-lens, which allows us to
obtain a very simple form of the linear transform above in the transverse Fourier space (see details in [J. W. Goodman,
Introduction to Fourier optics, Roberts & Company Publishers (2005)]):

˜⃗
𝐸
[︁
𝑘⃗⊥, 𝑧

(im)
]︁

= Π

⎡⎣
⃒⃒⃒⃗
𝑘⊥

⃒⃒⃒
2𝑘0NA

⎤⎦ ˜⃗
𝐸
[︁
𝑘⃗⊥, 𝑧

(foc)
]︁

where NA is the numerical aperture of the objective, Π is the rectangular function (Π(𝑢) is equal to 1 if |𝑢| < 0.5,
else it it equal to 0), and a tilde indicate a partial Fourier transform along the 𝑥 and 𝑦 coordinates (associated with a
Fourier frequency 𝑘⃗⊥). Note that this formula neglects the reversal of the image due to the negative magnification of
a single converging lens; in practice, this can be easily remedied by adding a second lens (as in a real microscope) or
by reversing the axes’ orientations in the imaging plane, in which case the formula above is perfectly valid.

10 Chapter 3. Microscopy model for Nemaktis

https://doi.org/10.1039/C8SM02448K


Nemaktis, Release 1.3.3

The formula above shows that Fourier components with
⃒⃒⃒⃗
𝑘⊥

⃒⃒⃒
≥ 𝑘0NA are filtered out by the objective while Fourier

components with
⃒⃒⃒⃗
𝑘⊥

⃒⃒⃒
< 𝑘0NA are preserved as such, which indeed corresponds to a low-pass filter. However, this

formula is insufficient to completely model our imaging system since the object plane (which we define as the output
plane of the object, i.e. the output of the backends presented in Sec. 3) can be slightly shifted with respect to the
focusing plane: in a real microscope, this shift is usually controled by a knob allowing to set the vertical position of
the sample with respect to the objective lens. Therefore, we need to propagate the fields from the object plane to the
focusing plane before applying the formula above. Since this propagation step happens in free space with 𝜖 = 1, this
can be done by exactly solving Helmoltz equation in Fourier space:

˜⃗
𝐸
[︁
𝑘⃗⊥, 𝑧

(foc)
]︁

= exp

{︂
𝑖
[︁
𝑧(foc) − 𝑧(obj)

]︁√︁
𝑘20 − 𝑘⃗2⊥

}︂
˜⃗
𝐸
[︁
𝑘⃗⊥, 𝑧

(obj)
]︁

The final image on the imaging plane is defined as the squared amplitude of 𝐸⃗
[︀
𝑟⃗(im)

]︀
, which can be calculated from

the two formulas above via the Fast-Fourier-Transform algorithm. To get an idea on how the numerical aperture of the
objective and the position of the object plane affect the final image, we provide a simple interactive example showing
how the image of a perfect circular mask is distorted through the imaging system:

3.5 5. Optical elements for polarized optical micrographs

In Sec. 2-4, we mostly focused on the general principles of microscopy and neglected the presence of optical elements
such as polarisers and waveplates, which play an important role in polarised optical microscopy. In this section,
we introduce the method used in Nemaktis for taking into account these optical elements in the calculation of the
final images, which are usually called polarised optical micrographs (POM). Nemaktis support two classes of optical
elements for polarised optical microscopy: polarisers/analysers which allows us to project the light polarisation on a
single axis, and waveplates which introduce a given phase shift between two given orthogonal polarisation axes. The
disposition of these elements in our virtual microscope model is schematized below. In a real microscope, the exact
disposition of these elements may be a bit different (they are often directly embedded inside the illumination/imaging
setups) but we will see in a moment that this does not change much for the calculation of POMs.

3.5.1 5.1 Calculation of natural light optical micrographs

Let us start with the simplest optical setup possible, without any polarisers or waveplates. Based on Sec. 2-4, the
mapping between incoming plane waves and final optical fields on the imaging plane may be described with a set of
special matrices:

¯̄𝑇
(𝑘,𝑙)
obj =

⎛⎜⎝
[︁
𝑃 ⋆ 𝐸⃗

(𝑘,𝑙,1)
out

]︁
· 𝑢⃗1

[︁
𝑃 ⋆ 𝐸⃗

(𝑘,𝑙,2)
out

]︁
· 𝑢⃗1[︁

𝑃 ⋆ 𝐸⃗
(𝑘,𝑙,1)
out

]︁
· 𝑢⃗2

[︁
𝑃 ⋆ 𝐸⃗

(𝑘,𝑙,2)
out

]︁
· 𝑢⃗2

⎞⎟⎠ ,

where 𝐸⃗(𝑘,𝑙,𝑚)
out correspond to the output transverse optical field of one of the backend in Sec. 3 for an incoming plane

wave 𝐸⃗(𝑘,𝑙,𝑚)
in , 𝑢⃗𝑚 (𝑚 = 1, 2) correspond to an orthogonal basis of polarisations in the transverse plane, and the

operation 𝑃⋆ correspond to a convolution with the linear filter 𝑃 representing the full imaging system, including the
point-spread-function of the objective and the propagation from the output object plane to the the focusing plane (see
Sec. 4).

So why use this complicated representation in terms of matrices? The advantage is that it allows to easily calculate the
final optical fields for an arbitrary input polarisation 𝑣⃗ (not simply 𝑢⃗1 and 𝑢⃗2) by multiplying the matrix ¯̄𝑇

(𝑘,𝑙)
obj with the

vector 𝑣⃗. This is very similar to the classical Jones calculus, except here the entries of the 2x2 matrices are not scalars
but rather scalar fields (which can depends on the transverse coordinates and can be submitted to convolution operation
including diffraction effects). Note that this representation is accurate only when the same polarisation basis can be
used for all incoming plane waves. This is true only in the paraxial regime of propagation, where the longitudinal
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components of the polarisation can be neglected (second order in the angle between the wavevector and the main
propagation axis 𝑧). Since we already assumed paraxial propagation in Sec. 2-4, we can therefore assume that our
transfer matrix representation is consistent and accurate.

We also assume that the illuminating source is unpolarised and that the detector in the imaging plane is polarisation-
independent: it simply measures the squared amplitude of the transverse optical field. This means that the final image
associated with the incoming wavevector 𝑘⃗(𝑘,𝑙) can be calculated as (up to a constant multiplicative factor):

𝐼(𝑘,𝑙) =

∫︁ 2𝜋

0

⃒⃒⃒⃒
⃒ ¯̄𝑇 (𝑘,𝑙)

obj

(︃
cos 𝜃

sin 𝜃

)︃⃒⃒⃒⃒
⃒
2

d𝜃

𝜋

A direct calculation shows that we do not even need to perform an integration, we can simply sum the squared
amplitude of the transfer matrix entries:

𝐼(𝑘,𝑙) =

2∑︁
𝑚=1

2∑︁
𝑛=1

⃒⃒⃒[︁
¯̄𝑇
(𝑘,𝑙)
obj

]︁
𝑚𝑛

⃒⃒⃒2

3.5.2 5.2 Calculation of polarised optical micrographs

Now, how do we generalize the calculation of the previous subsection by including any combination of optical elements
for polarised microscopy? Let us introduce the usual Jones matrices ¯̄𝑇pol, ¯̄𝑇an and ¯̄𝑇wp respectively associated with a
polariser, analyser or waveplate. The expression of the transfer matrix for a polariser or analyser only depends on the
angle 𝜓pol,an of the optical element axis with respect to 𝑢⃗1 in the transverse plane (horizontal axis in Nemaktis):

¯̄𝑇pol,an =

[︂
cos2 𝜓pol,an cos𝜓pol,an sin𝜓pol,an

cos𝜓pol,an sin𝜓pol,an sin2 𝜓pol,an

]︂
The expression of the transfer matrix for a waveplate depends on the angle 𝜓wp of the fast axis of the optical element
with respect to 𝑢⃗1 and the phasor 𝜂 = exp [𝑖Γ/2], with Γ the retardance of the waveplate:

¯̄𝑇wp =

[︂
𝜂* cos2 𝜓wp + 𝜂 sin2 𝜓wp (𝜂* − 𝜂) cos𝜓wp sin𝜓wp

(𝜂* − 𝜂) cos𝜓wp sin𝜓wp 𝜂* sin2 𝜓wp + 𝜂 cos2 𝜓wp

]︂
Nemaktis supports three different kinds of waveplates:

• Achromatic quarter-wave plate: Γ = 𝜋/2 independently of the wavelength;

• Achromatic half-wave plate: Γ = 𝜋 independently of the wavelength;

• Tint-sensitive full-wave plate: Γ = 2𝜋 [0.54/𝜆], where 𝜆 is the wavelength in 𝜇m; the advantage of this wave-
plate is that it allows the visualization of in-plane molecular angular deviation as color shifts when illuminating
an inhomogenenous birefringent sample with white light.

Now that this set of transfer matrices is introduced, the calculation of the final POM images is really simple:

• Multiply right to left the transfer matrices associated by each elements of the microscope in the same order that
they are crossed by the illumination beam, and store the result in a global transfer matrix ¯̄𝑇

(𝑘,𝑙)
tot . For example, if

the setup includes a polariser, the object, a waveplate and an analyser, the total transfer matrix associated with
the wavevector 𝑘⃗(𝑘,𝑙) is:

¯̄𝑇
(𝑘,𝑙)
tot = ¯̄𝑇an

¯̄𝑇wp
¯̄𝑇
(𝑘,𝑙)
obj

¯̄𝑇pol

• Calculate the final image as in the last subsection by summing the squared amplitude of each components of the
total transfer matrix:

𝐼(𝑘,𝑙) =

2∑︁
𝑚=1

2∑︁
𝑛=1

⃒⃒⃒[︁
¯̄𝑇
(𝑘,𝑙)
tot

]︁
𝑚𝑛

⃒⃒⃒2
The validity of our method is again ensured by our assumption of paraxial propagation:
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• Since in this regime of propagation the operation 𝑃⋆ representing the imaging setup is polarisation-independent,
it can be commuted with any operation on the polarisation state (such as the transfer matrices introduced above);
this is why the real position of the waveplate and analyser inside the imaging setup of a real microscope do not
matter in our simple and ideal model of microscopy.

• The transfer matrices of the polariser/analyser and waveplate, as introduced above, do not depend on the
wavevector of the incoming plane wave, which is not true for wide-angle incoming plane waves.

3.5. 5. Optical elements for polarized optical micrographs 13
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CHAPTER

FOUR

TUTORIAL

This tutorial provides a hands-on introduction to the python package nemaktis. You will learn the different ways
of creating director field data, how to define the sample geometry and material constants, and how to propagate and
visualise optical fields.

First of all, open your favorite text/code editor and create a new python file (which we will call script.py in the
following). The script can be tested at any moment in a terminal on condition that the conda environment in which
you installed nemaktis is activated (conda activate [environment name]):

cd [path to your script]
python script.py

Alternatively, you can work interactively with ipython (which must be run from a terminal in which the conda envi-
ronment for nemaktis is activated).

4.1 Defining a DirectorField

Before starting using nemaktis, we of course need to import the associated python package. We will also import
numpy, which will be needed to define arrays:

import nemaktis as nm
import numpy as np

Next, we need to define the permittivity tensor of the LC structure. Currently, only uniaxial media is supported
in the high-level interface (which means we only need to specify the director field associated with the privileged
axis of the birefringence medium), but support for arbitrary permittivity tensor should be added soon (the low-level
backends dtmm and bpm-solver are already fully compatible with biaxial media). In nemaktis, any vector field
is represented internally on a cartesian regular mesh as a numpy array of shape (Nz,Ny,Nx,Nv), where Nv is the
dimension of the vector data (3 for a director field, 6 for a symmetric tensor) and Nx, Ny and Nz are the number
of mesh points in each spatial direction. In addition to these variables, one needs to specify the total lengths of the
mesh in each spatial direction, which we will call Lx, Ly and Lz in the following. All lengths are in micrometer
in nemaktis, and the mesh for the director field is always centerered on the origin (which means that the spatial
coordinate u=x,y,z is always running from -Lu/2 to Lu/2).

Here, we will start by defining an empty DirectorField object on a mesh of dimensions 80x80x80 and lengths
10x10x10:

nfield = nm.DirectorField(
mesh_lengths=(10,10,10), mesh_dimensions=(80,80,80))

Next, we need to specify numerical values for the director field. Two methods are possible: either you already have
a numpy array containing the values of your director field, in which case you can directly give this array to the
DirectorField object (remember, you need to make sure that this array is of shape (Nz,Ny,Nx,3)):
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nfield.vals = my_director_vals_numpy_array

Or you have an analytical formula for the director field, in which case you can define three python functions and give
these to the DirectorField object. In this tutorial, we will assume the latter option and define the director field of
a double twist cylinder:

q = 2*np.pi/20
def nx(x,y,z):

r = np.sqrt(x**2+y**2)
return -q*y*np.sinc(q*r)

def ny(x,y,z):
r = np.sqrt(x**2+y**2)
return q*x*np.sinc(q*r)

def nz(x,y,z):
r = np.sqrt(x**2+y**2)
return np.cos(q*r)

nfield.init_from_funcs(nx,ny,nz)

If the analytical formula for the director components do not give normalized director values, you can still normalize
manually the director values after importing them:

nfield.normalize()

Finally, you can apply geometric transformation to the director field with the methods rotate(),
rotate_90deg(), rotate_180deg(), rescale_mesh(), extend(), as well as specify a non-trivial do-
main for the LC phase with the method set_mask(), All these methods are documented in the API section of this
wiki. Here, we will simply demonstrate the capabilities of the director field object by applying a 90° rotation around
the axis x, extending the mesh in the xy plane with a scale factor of 2, and defining a droplet mask centered on the
mesh with a diameter equal to the mesh height:

nfield.rotate_90deg("x")
nfield.extend(2,2)
nfield.set_mask(mask_type="droplet")

Note that extending the mesh in the xy direction is essential if you define a non-trivial LC mask, because you need to
leave enough room for the optical fields to propagate around the LC domain.

And that’s it, we now have set-up the director field of a double-twist droplet with the polar axis oriented along the axis
y! If you want to save this director file to a XML VTK file (the standard format used by the excellent visualisation
software Paraview), you can add the following command to your script:

nfield.save_to_vti("double_twist_droplet")

You can import back the generated file in any script by directly constructing the DirectorField object with the path to
this file:

nfield = nm.DirectorField(vti_file="double_twist_droplet.vti")

This functionality is especially useful if generating the director field values takes a lot of time.
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4.2 Defining a LCMaterial

The next step is to define possible isotropic layers above the LC layer (which can distort the optical fields on the
focal plane), as well as the refractive indices of all the materials in the sample. Since our system here consists of a
droplet embedded in another fluid, we need to specify both extraordinay and ordinary indices for the LC droplet and
the refractive index of the host fluid. All these informations are stored in the class LCMaterial:

mat = nm.LCMaterial(
director_field=nfield, ne=1.5, no=1.7, nhost=1.55)

Note that you can also specify refractive indices with a string expression depending on the wavelength variable
“lambda” (in µm), in case you want to take into account the dispersivity of the materials of your sample.

We also want to add a glass plate above the sample and additional space for the host fluid between the droplet and the
glass plate:

mat.add_isotropic_layer(nlayer=1.55, thickness=5) # 5 µm space between the droplet
→˓and glass plate
mat.add_isotropic_layer(nlayer=1.51, thickness=1000) # 1mm-thick glass plate

We don’t specify isotropic layers below the sample because in nemaktis the incident optical fields always correspond
to a set of plane waves whose wavectors are weakly tilted with respect to the z direction (in which case the amplitude
of the fields is uniformly affected by any isotropic layers orthogonal to z).

4.3 Propagating optical fields through the sample

Now that the sample geometry is fully caracterized, we can propagate fields through the sample and through an
objective into the visualisation plane (which we initially assume to be conjugate to the center of the sample), as in a
real microscope (see Microscopy model for Nemaktis for more details): a set of plane waves with different wavevectors
and wavelengths are sent on the LC sample, and the associated transmitted optical fields are calculated using one of
the backend.

The actual set of wavelengths for the plane waves approximate the relevant part of the spectrum of the illumination
light, whereas the set of wavevectors is determined from the numerical aperture of the input condenser. The more open
the condenser aperture is, the smoother the micrograph will look, since an open condenser aperture is associated with
a wide range of angle for the wavectors of the mutually incoherent incident plane waves. Conversely, an almost closed
condenser aperture is associated with a single plane wave incident normally on the sample.

With nemaktis, the propagation of optical field through a LC sample is as simple as defining an array of wave-
lengths defining the spectrum of the light source, creating a LightPropagator object, and calling the method
propagate_fields:

wavelengths = np.linspace(0.4, 0.8, 11)
sim = nm.LightPropagator(

material=mat, wavelengths=wavelengths, max_NA_objective=0.4,
max_NA_condenser=0, N_radial_wavevectors=1)

output_fields = sim.propagate_fields(method="bpm")

The parameter max_NA_objective defined in this code snippet corresponds to the maximal numerical aperture
of the microscope objective. The parameters max_NA_condenser and N_radial_wavevectors respectively
sets the maximal numerical aperture of the input condenser aperture and the number Nr of incident wavevectors in
the radial direction of the condenser (the total number of wavevectors will be 1+3*Nr*(Nr-1), so be carefull to
not set a value too big to avoid memory overflow or long running time). Here, we assume an almost fully closed
condenser aperture, so we set the numerical aperture to zero and the total number of wavevectors to 1. Note that
omitting the two parameters max_NA_objective and N_radial_wavevectors during the construction of the
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LightPropagator object will default to these values, i.e. this class will assume that there is only one single plane
wave incident normally on the sample. Finally, we mention that you will be able to dynamically set the actual values of
the numerical aperture of the objective and condenser later on when visualizing the optical fields (with the constraints
that these quantities must always be comprised between 0 and the max bounds set here).

The propagate_fields method uses the specified backend to propagate fields (here, bpm-solver) and returns
an OpticalFields object containing the results of the simulation. Periodic boundary conditions in the x and y
directions are systematically assumed, so you should always extend apropriately your director field in order to have a
uniform field near the mesh boundaries.

Note that internally two simulations are run for each wavelength and wavevector, one with an input light source
polarised along x and the other with an input light source polarised along y. This allows us to fully caracterize the
transmission matrix of the sample and reconstruct any type of micrographs (bright field, crossed polariser. . . ), as
explained in Microscopy model for Nemaktis. Similaryly to the DirectorField object, you can save the output
fields to a XML VTK file, and reimport them in other scripts:

# If you want to save the simulation results
output_fields.save_to_vti("optical_fields")

# If you want to reimport saved simulation results
output_fields = nm.OpticalFields(vti_file="optical_fields.vti")

4.4 Visualising optical micrographs

To help the user visualise optical micrographs as in a real microscope, nemaktis includes a graphical user interface
allowing to generate any type of micrograph in real-time. Once you have generated/imported optical fields in you
script, you can start using this interface with the following lines of code:

viewer = nm.FieldViewer(output_fields)
viewer.plot()

All parameters in this user interface should be pretty self-explanatory, with lengths expressed in µm and optical el-
ement angles in ° with respect to x. We will simply mention here that the quarter-wavelength and half-wavelength
compensators are assumed to be achromatic, while the full-wave “tint sensitive” compensator is aproximated with a
slab of wavelength-independent refractive index with a full-wave shift at a wavelength of 540 nm.

Concerning color management, we assume a D65 light source and project the output light spectrum first on the XYZ
space, then on the sRGB color space, to finally obtain a usual RGB picture. For more details, see https://dtmm.
readthedocs.io/en/latest/tutorial.html#color-conversion.

Finally, refocalisation of the optical micrographs is done by switching to Fourrier space and using the exact propagator
for the Helmholtz equation in free space. The unit for the z-focus parameter is again micrometers.
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FIVE

API REFERENCE

5.1 DirectorField

class nemaktis.lc_material.DirectorField(**kwargs)
The DirectorField class stores the director field and mesh informations. It is initialized given either the lengths
and dimensions of the associated 3D mesh or a path to a vti file containing the director field and mesh details.
In the first version of this constructor: .. code-block:: python

nfield = DirectorField( mesh_lengths=(Lx,Ly,Lz), mesh_dimensions=(Nx,Ny,Nz))

the actual values of the director field needs to be provided later using the “init_from_funcs” method or via
the setter method “vals” (numpy array of shape (Nz,Ny,Nx,3)). The mesh lengths needs to be specified in
micrometer. In the second version of this constructor: .. code-block:: python

nfield = DirectorField(vti_file=”path to vti file”)

the values of the director field and the details of the mesh are automatically assigned from the vti file.

set_mask(*, mask_type, mask_formula=None, mask_ndarray=None)
Set a mask for the LC domain. This method allows to specifify complex shape for the LC domain inside the
regular cartesian mesh specified at construction. Positive mask value are associated with the LC domain,
while negative values are associated with the embedding fluid. Three possible ways of initializing the mask
are possible. If you simply want to specify a spherical domain for a droplet centered on the mesh and of
diameter equal to the mesh length along z, call: .. code-block:: python

nfield.set_mask(mask_type=”droplet”)

You can also use a string formula depending on the space variables x, y and z and which must evaluates
to a value >=0 if the associated point is inside the LC domain, else to a value <=0: .. code-block:: python

nfield.set_mask(mask_type=”formula”, mask_formula=”your formula”)

Finally, you can directly gives a numpy array of shape (Nz,Ny,Nx), where each value in this array must be
>=0 if the associated mesh point is inside the LC domain, else <=0:

nfield.set_mask(mask_type="raw", mask_ndarray=your_mask_array)

delete_mask()
Delete the current LC mask.

property mask_type
“droplet”, “formula” or “raw”.

Type Returns the mask type

property mask_formula
Returns the LC mask formula if it was set, else returns None.
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property mask_vals
Returns the LC mask boolean array.

extend(scale_x, scale_y)
Extend the computational mesh in the xy plane by padding new points near the x and y boundaries. These
new points are initialized with the edge value of the director field on the x and y boundaries. :param
scale_x: The mesh length in the x-direction will be scaled by this factor. :type scale_x: float :param
scale_y: The mesh length in the y-direction will be scaled by this factor. :type scale_y: float

rotate_90deg(axis)
Rotate the director field by 90 degrees around the specified axis.

Parameters axis (str) – Axis around which to perform the rotation. Need to be under the
form ‘[s]A’ where the optional parameter ‘s’=’+’ or ‘-‘ decribes the sign of rotation and
‘A’=’x’, ‘y’ or ‘z’ defines the rotation axis.

rotate_180deg(axis)
Rotate the director field by 180 degrees around the specified axis.

Parameters axis (str) – Axis around which to perform the rotation. Need to be under the
form ‘A’ where ‘A’=’x’, ‘y’ or ‘z’ defines the rotation axis.

rotate(axis, angle, fill_value=None)
Rotate the director field by an arbitrary angle around the specified axis.

Parameters

• axis (str) – Axis around which to perform the rotation. Need to be under the form ‘A’
where ‘A’=’x’, ‘y’ or ‘z’ defines the rotation axis.

• angle (float) – Angle of rotation in degrees.

rescale_mesh(scaling_factor)
Scale the mesh using the given scaling factor.

Parameters scaling_factor (factor) – The mesh lengths and spacings will be multi-
plied by this factor.

property vals
Numpy array for the director values, of shape (Nz,Ny,Nx,3).

init_from_funcs(nx_func, ny_func, nz_func)
Initialize the director field from three functions for each of its component. The functions must depends
on the space variables x, y and z. We recall that the mesh is centered on the origin. If the given function
are numpy-vectorizable, this function should be pretty fast. If not, a warning will be printed and the given
function will be vectorized with the numpy method vectorize (in which case you should expect a much
slower execution time).

normalize()
Normalize the director field values to 1.

save_to_vti(filename)
Save the director field into a vti file. The “.vti” extension is automatically appended, no need to include it
in the filename parameter (but in case you do only one extension will be added)

get_pos(ix, iy, iz)
Returns the spatial position associated with the mesh indices (ix,iy,iz) It is assumed that the mesh is cen-
tered on the origin (0,0,0).

get_mesh_dimensions()
Returns the dimensions (Nx,Ny,Nz) of the simulation mesh
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get_mesh_lengths()
Returns the lengths (Lx,Ly,Lz) of the simulation mesh

get_mesh_spacings()
Returns the spacings (dx,dy,dz) of the simulation mesh

get_n_vertices()
Returns the number of vertices in the simulation mesh

5.2 LCMaterial

class nemaktis.lc_material.LCMaterial(*, director_field, ne, no, nhost=1, nin=1)
A class containing the director field data, simulation mesh, and physics constants.

Parameters

• director_field (DirectorField object) –

• ne (float or math string depending on the wavelength variable
"lambda" (µm)) – The extraordinary refractive index associated with the LC material.

• no (float or math string depending on the wavelength variable
"lambda" (µm)) – The ordinary refractive index associated with the LC material.

• nhost (optional, float or math string depending on the
wavelength variable "lambda" (µm)) – The refractive index associated with
an eventual host fluid in which the LC domain is embedded (see DirectorField.set_mask).

• nin (optional, float or math string depending on the
wavelength variable "lambda" (µm)) – The refractive index associated
with the input medium below the LC layer. A default value of 1 is assumed.

add_isotropic_layer(*, nlayer, thickness)
Add an isotropic layer above the sample. Light is assumed to propagate in the z-direction, and will cross
first the LC material, and then the isotropic layers specified with this function.

Parameters

• nlayer (float) – Refractive index of the new isotropic layer

• thickness (float) – Thickness (µm) of the new isotropic layer

5.3 LightPropagator

class nemaktis.light_propagator.LightPropagator(*, material, wave-
lengths, max_NA_objective,
max_NA_condenser=0,
N_radial_wavevectors=1)

The LightPropagator class allows to propagate optical fields through a LC sample as in a real microscope: a
set of plane waves with different wavevectors and wavelengths are sent on the LC sample, and the associated
transmitted optical fields (which can now longer be represented as plane waves due to diffraction) are calculated
using one of the backend.

The actual set of wavelengths for the plane waves (choosen at construction) approximate the relevant part of
the spectrum of the illumination light, whereas the set of wavevectors (also calculated at construction) are
determined from the numerical aperture of the input condenser. The more open the condenser aperture is, the
smoother the micrograph will look, since an open condenser aperture is associated with a wide range of angle

5.2. LCMaterial 21



Nemaktis, Release 1.3.3

for the wavectors of the incident plane waves. Conversely, an almost closed condenser aperture is associated
with a single plane wave incident normally on the sample.

Note that with the FieldViewer class, the transmitted optical fields calculated with this class can be projected
on a visualisation screen through an objective of given numerical aperture. The numerical apertures of both the
objective and condenser aperture can be set interactively in the FieldViewer class, whereas in this class we only
specify the maximum value allowed for both quantities.

The simulation and choice of backend is done by calling the method propagate_field.

For each wavelength and wavevector of the incident plane wave, two simulations are done: one with a light
source polarised along x, and one with a light source polarised along y. This allows us to fully caracterize the
transmission of the LC sample and reconstruct any kind of optical micrograph.

Parameters

• material (LCMaterial object) –

• wavelengths (array-like object) – An array containing all the wavelengths of
the spectrum for the light source.

• max_NA_objective (float) – Sets the maximal numerical aperture for the microscope
objective (you can dynamically adjust this quantity later on with a FieldViewer).

• max_NA_condenser (float) – Sets the maximal numerical aperture for the microscope
condenser (you can dynamically adjust this quantity later on with a FieldViewer).

• N_radial_wavevectors (int) – Sets the number of wavevectors in the radial direc-
tion for the illumination plane waves. The total number of plane waves for each wavelength
is 1+3*Nr*(Nr-1), where Nr correspond to the value of this parameter.

property material
Returns the current LC material

propagate_fields(*, method, bulk_filename=None)
Propagate optical fields through the LC sample using the specified backend.

Parameters

• method ("bpm" | "dtmm") – If equal to “bpm”, the beam propagation backend will
be used. Should be used if accuracy is privileged over speed.

If equal to “dtmm”, the diffractive transfer matrix backend will be used (in its simplest
version). Should be used if speed is privileged over accuracy.

• bulk_filename (None or string) – If none, the backend will not export the bulk
value of the optical fields in the LC layer. Else, the bulk fields values will be exported to a
vti file whose basename is set by this parameter.

5.4 OpticalFields

class nemaktis.light_propagator.OpticalFields(**kwargs)
The OpticalFields object stores the mesh information of the transverse mesh (plane mesh orthogonal to the
z-direction, default altitude of 0) and the optical fields values on this mesh. Since this python package is
mainly used to reconstruct micrographs, we only store internally the complex horizontal electric field for two
simulation: one with a light source polarised along x, and the other with a light source polarised along y. In
case multiple wavelengths/wavectors were used in the simulation, we store these quantities separately for each
wavelength/wavevector.
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This class is initialised either manually or with a path to a vti file containing previously calculated optical fields
and mesh details.

In the first version of this constructor:

optical_fields = OpticalFields(
wavelengths=[l0,l1,...,lN], max_NA_objective=NA_o,
max_NA_condenser=NA_c, N_radial_wavevectors=Nr,
mesh_lengths=(Lx,Ly), mesh_dimensions=(Nx,Ny))

the actual values of the transverse fields needs to be provided later using the raw setter method fields_vals (shape
(N_wavelengths,N_wavevectors,4,Ny,Nx), with N_wavevectors=3*Nr*(Nr-1)+1).

In the second version of this constructor:

optical_fields = OpticalFields(vti_file="path to vti file")

the values of the wavelengths and transverse fields are automatically assigned from the vti file.

copy()
Returns a hard copy of this OpticalFields object

property focused_vals
Numpy array for the optical fields values after focalisation by the microscope objective, of shape
(N_wavelengths,N_wavevectors,4,Ny,Nx).

property vals
Numpy array for the optical fields values, of shape (N_wavelengths,N_wavevectors,4,Ny,Nx).

If you want to initialize by hand the optical fields, the four components in the third dimension correspond
to:

• complex Ex field for an input polarisation//x

• complex Ey field for an input polarisation//x

• complex Ex field for an input polarisation//y

• complex Ey field for an input polarisation//y

focus_fields(z_focus=None)
Propagate the optical fields through the objective lens to the screen conjugate to the focusing plane (whose
altitude inside the sample is set with the parameter z_focus).

save_to_vti(filename)
Save the optical fields into a vti file.

The “.vti” extension is automatically appended, no need to include it in the filename parameter (but in case
you do only one extension will be added)

get_pos(ix, iy)
Returns the position associated with the mesh indices (ix,iy)

It is assumed that the mesh is centered on the origin (0,0).

get_wavelengths()
Returns the wavelength array

get_wavevectors()
Returns the wavevectors array

get_qr_index(NA_condenser)
For internal use.
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Allows to build sub-range of wavevector index for a given numerical aperture of the condenser, which
must be smaller than the internal maximal numerical aperture set at construction.

get_delta_qr()
For internal use.

Allows to build integration rule with respect to the wavectors.

get_mesh_dimensions()
Returns the dimensions (Nx,Ny) of the transverse mesh

get_mesh_lengths()
Returns the lengths (Lx,Ly) of the transverse mesh

get_mesh_spacings()
Returns the spacings (dx,dy,dz) of the transverse mesh

get_n_vertices()
Returns the number of vertices in the transverse mesh

5.5 FieldViewer

class nemaktis.field_viewer.FieldViewer(optical_fields, cmf=None)
A class allowing to recombine optical fields to generate optical micrographs like in a real microscope.

Parameters

• optical_fields (OpticalFields object) – Can be created either by a LightPropa-
gator or directly by importing a vti file exported in a previous simulation.

• cmf (numpy ndarray) – A color matching array created with the dtmm package, see
https://dtmm.readthedocs.io/en/latest/reference.html#module-dtmm.color

polariser = True
Is there a polariser in the optical setup?

analyser = True
Is there an analyser in the optical setup?

compensator = 'No'
If “No”, remove the compensator from the optical setup. Other values set the type of compensator:

• “Quarter-wave”: An achromatic quarter-wave compensator

• “Half-wave”: An achromatic half-wave compensator

• “Tint-sensitive”: a full-wave compensator at 540 nm.

polariser_angle = 0
Angle (in degree) between the privileged axis of the polariser and the x-axis

analyser_angle = 90
Angle (in degree) between the privileged axis of the analyser and the x-axis

compensator_angle = 0
Angle (in degree) between the fast axis of the compensator and the x-axis

intensity = 1
Intensity factor of the micrograph

NA_condenser = 0
Numerical aperture of the microscope’s condenser
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n_tiles_x = 1
Number of repetitions of the micrograph in the x-direction

n_tiles_y = 1
Number of repetitions of the micrograph in the y-direction

grayscale = False
Should we calculate a grayscale micrograph (True) or a color micrograph (False)

NA_objective = 1
Numerical aperture of the microscope’s objective

plot()
Run a graphical user interface allowing to dynamically adjust the attributes of this class and visualize the
associated micrographs in real-time.

property z_focus
Current vertical position of the focal plane

get_image()
Returns the current micrograph as a numpy array of shape (Ny,Nx,3|1), (last dim is 3 if in color mode, 1 if
in grayscale mode).

update_image()
Recompute the micrograph from the optical fields data
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CHAPTER

SIX

RAY-TRACING BACKEND

The executable of the ray tracing backend is named rt-solver and can be called in any terminal with the conda
environment for nemaktis activated.

rt-solver relies on json-like configuration file, so you don’t have to touch to any C++ code if you just want to use
the method. To generate a default configuration file, run:

rt-solver -c [Name of the configuration file]

All parameters in this configuration file are fully documented, so you should be able to understand how to make the
code working just by reading and ajusting the parameters in this file. More information on the subtleties of this code
will be added later on this wiki, for now we will just mention that the input vti file for the director field can be created
directly with the high-level interface (see DirectorField).

Once you are satisfied with the change you made to your configuration file, you can actually run the code by typing:

rt-solver -x [Name of the configuration file]
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CHAPTER

SEVEN

BEAM PROPAGATION BACKEND

The executable of the beam propagation backend is named bpm-solver and can be called in any terminal with the
conda environment for nemaktis activated.

bpm-solver relies on json-like configuration file, so you don’t have to touch to any C++ code if you just want to
use the method. To generate a default configuration file, run:

bpm-solver -c [Name of the configuration file]

All parameters in this configuration file are fully documented, so you should be able to understand how to make the
code working just by reading and ajusting the parameters in this file. More information on the subtleties of this code
will be added later on this wiki, for now we will just mention that the input vti file for the director field can be created
directly with the high-level interface (see DirectorField).

Once you are satisfied with the change you made to your configuration file, you can actually run the code by typing:

bpm-solver -x [Name of the configuration file]
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CHAPTER

EIGHT

DIFFRACTIVE TRANSFER MATRIX BACKEND

The complete documentation of dtmm can be found in another wiki:

https://dtmm.readthedocs.io
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